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ABSTRACT

This report documents the work performed on the single parameter
testing program during the first quarter of Phase E, Contract NAS
8-11715, Part III. The objective of single parameter‘testing is
to simultaneously determine several individual parameters of a
component or system, thereby obtaining faster checkout time,

The ob jective of Phase E is to apply the single parameter testing
techniques developed in previous phases to an AC and also a DC
amplifier, The amplifier characteristics to be measured are

the frequency response and the amplifier linearity.

The areas covered in this quarterly report are:
1) the investigation of simpler test signals
2) the AC amplifier analysis
3) a transfer function determination program

4) the measurement of nonlinear component parameters.
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1.0 INTRODUCT ION

This report documents the work performed on the single parameter
testing program during the first quarter of Phase E, Contract NAS
8-11715, Part III. The objective of Phase E is to apply the single
parameter testing techniques developed in previous phases to an AC
and also a DC amplifier which are used as signal processors be-
tween the space vehicle transducers and the telemetry equipment.
The amplifier characteristics to be measured are the frequency

response and the amplifier linearity.

The objective of single parameter testing is to simultaneously
determine several individual parameters of a component or system,
thereby obtaining faster checkout time. A block diagram of the
implementation of the time sampling technique is shown in Figure
l-1., The input probing signals for electrical equipment testing
can be stored in a memory device or generated with digital or
analog circuitry, for example, the generation of a pulse. The
estimator, timing control, and sample and hold circuits are pro-
grammed on an analog computing device such as a small commercially
available analog computer or a specially designed group of analog
computer components, The function of the reference response block
in the diagram can be performed in three different ways. It can
be a reference response of a nominal system recorded on the memory
device, or a model of the nominal system implemented on the analog
computing device or third, a nominal component. For the second
and third way, the input probing signal is fed to the model (or

nominal component) as well as to the component to be tested.
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Figure 1-1

Testing Using Growing Impulse Response Probing Signals

An outline of the steps necessary to implement the technique is:

1) Develop a component model of a nominal component which
can be used in the determination of an estimator.

2) The estimator is then determined by methods described
in the Phase C report (Reference ¢)

3) The third step is the implementation and checkout of
the technique with the actual hardware to be tested.

Section 2 of this quarterly report describes an investigation of
the improved testing signals for single parameter testing. Pre-
vious work has used growing exponential signals and growing im-
pulse response testing signals, In this quarter, signals such

as pulses, ramps and others were evaluated, Using these testing
signals which are simpler to generate, the parameter prediction

results obtained were comparable to previous results reported in
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the final Phase C report (Reference 4), sSection 4 discusses
the results obtained in measuring the coefficients of a poly-~
nomial nonlinearity and nonlinear characteristics such as lim-
iting and dead-band., The analysis of the AC amplifier to de-
termine a nominal model is presented in Section 4, The DC
amplifier analysis will be performed during the next quarter,
Section 5 describes a digital program which accepts sinusoidal
magnitude and phase data as input and gives the best (in a

least square sense) transfer function to fit the data.

Conclusions for this quarterly report are given in Section 6,

1-3
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2,0 TESTING SIGNAL SELECTION

Several input testing sighals were evaluated during the quarter
to determine if the same parameter prediction information could
be obtained using simpler testing signals than previously in-
vestigated, Among the signals considered were

1) a pulse

2) a ramp (1 cycle)

3) a square wave (1 cycle)

4) a triangular wave (1l cycle)

5) an exponential waveform

6) a double pulse

7) a sine wave (1 cycle)

It is relatively easy to generate and control the timing of
these signals., The equipment needed is digital logic cards
and analog circuitry or some commercial signal generation
equipment, The conclusion reached was that these simplified
testing signals could be used to obtain parameter prediction
results comparable to results previously presented in Ref-
erence 1, No strong preference was found for any one of the
above testing signals for a general testing situation. The
square wave and ramp worked somewhat better for testing low-
pass and bandpass filters and the pulse was a good testing sig-
nal for a highpass filter. The frequency content of each of
these signals is given in Figures 2-1 to 2-7. The timing (for
example, pulse width) of the testing signal can be selected

using these figures so as to put the maximum amount of signal

2-1
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energy in the region of the frequency response where the com-
ponent transfer function poles are located, If the poles to

be measured are far apart in the frequency spectrum, two se-
quential testing signals may be required to measure the pole
locations. Another possibility is a combination signal such

as the double pulse spectrum shown in Figure 2-6. This partic-
ular signal would be suitable to measure a component with a

transfer function of

S
T+ 75/2)(1 + 75/200) (2-1)
The sharp initial pulse in the input time waveform would measure
essentially just the pole at 200/t rad/sec and the long pulse

for v seconds would measure just the pole at 2/t rad/sec.

2.1 SECOND ORDER TERMS

A factor which was given further consideration during this
phase was the inclusion of higher order terms in representing
the output difference waveform as a function of the parameter
changes, The difference voltage waveform between the nominal
system and the system to be tested (assuming two parameters

that vary) can be represented by

v(t)

al(t) X + a2(t) x2 + a3(t) x3 + ...

(2-2)

+

bl(t) Y + bz(t) Y2 + b3(t) Y3 + ...

2

+

2
cll(t) XY + ch(t) XY + c21(t) XY+ ...

2-9



where V(t)

the difference waveform as a function of time

10AP 10AP

x = -5 1 . Y= 2

1 2
P = the nominal value of parameter n
APn = the change in value of parameter n

a,b,c = the coefficients

The most significant terms in equation 2-2 are the 3y and bl
terms, and past effort has been based primarily on these linear
terms. In studying the thrust vector control system in Phase C
however, one second order term (a2) was included., During this

past quarter the C13 crossproduct term was included to try to

increase the accuracy.

Run X Y V(tl)
0 0 0 0
1 1 0 +40
2 -1 0 -40
3 0 1 +40
4 0 -1 -20
5 1 1 +75
Table 2-1
Coefficient Determination Data

The coefficients ay, a5, by, b, and €11 for a given time t,,

can be determined from data such as given in Table 2-1,




Assuming the experimental data given in the table, the coefficients

at time t, would be:

1

From Run 1 andg 2

V(t)) = 40 = a (1) + a2(l)2

- 40 = a (-1) + a2(—l)2

implying that a; = 40 and a, = 0. From Run 3 and 4

V(t) = 40 = b (1) + b2(1)2

- 20 = by (-1) + b2(-1)2

implying that bl = 30 and b2 = 10, From Run 5

V(t;) = 75 = a (1) + a2(1)2 + b (1) + b2(1)2 + (1) (1)

75 40 + 0 + 30 + 10 + ¢

11

=3 = Sy

Taking data at five time points, the coefficients for five

equations of the form
2
V(tn) = a1(tn) X + a2(tn) X + bl(tn) Y
+ by (t) Y2 + ¢ (t ) XY
2'n 11 "n

can be determined.
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A matrix can then be written

_ . _ 4
V(tl) al(tl) a2(tl) bl(tl) b2(tl) cll(tl) X
v(t,) a (€,) — _ — _ %2

— = —_ —_ — — _ . Y
_ — - - - — v?
Lv(tS) a) (tg) — - - c11(ts) *

The inverse of the coefficient matrix which can be computed

on a digital computer is then the estimator. Letting Mij

be the elements of the matrix inverse and because only X and

Y are of interest, the solution equations are

. ——f

Lo My M2 My My M vity)
Y My M3z M3z My Mg vit,)
v(t,)
vit,)

|76 ]

These two equations are implemented by sampling the difference
waveform at the five times tn and multiplying the values by

the Mij coefficients to obtain X and Y, the parameter changes,

Many runs were taken using the procedure with several different
transfer functions, testing signals and number of terms used
to represent the difference waveform. The results of some of

these runs are given in Table 2-2, The percentage accuracy

2-12
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given is the average of about thirty data points with one or
more parameters varying within the range of + 20%. The con-

clusions drawn from the data were that

1) The square wave was a good testing signal for
lowpass and bandpass transfer functions.

2) The pulse was a good testing signal for highpass
transfer functions.

3) Addition of second order terms in the equation to
represent the difference waveform improved the
accuracy of the parameter prediction,

4) Addition of cross order terms in the equation
to represent the difference waveform degraded
the accuracy of the parameter prediction.

In order to better understand the reasons for why poorer results
are obtained when a more accurate representation is used for

the difference signal waveform, the ill-conditioning of a
matrix was investigated, A matrix is ill-conditioned if’

it is in some sense nearly singular., One measure of matrix
ill-conditioning can be determined from the following (see

th order matrix

Reference 7). The equations which the n
represent can be written

n
z: aij xj - cJ =0(i=1, 2,..n)
j=1

These equations represent n hyperplanes and the angle between

any two of them is given by

n n n
2
cos gij =2 Ak aij2[Z azik] Z azjk]

k=1 k=1 k=1

If any of the (2) possible angles are small (say less than

15 degrees), than it is possible to have numerical stability

2-14




problems. In terms of the estimator in the single parameter
testing setup, poor parameter prediction will result if aby
of the angles are small., Thus this technique of determining
the angles between hyperplanes is a good preliminary check

on whether an estimator can give a good prediction,
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3.0 NONLINEAR SYSTEM TESTING ANALYS IS

The analysis in this section deals with two special nonlinear-
ities, however, the analytical and experimental results indicate
that the conclusions are applicable to a broad class of nonlinear
systems, This observation is probably the most important result
of the investigation because confidence in being able to measure
nonlinear parameters is greatly increased if the results of an
analysis of special nonlinearities can be extended to a broad
class of nonlinearities, A review of nonlinear analysis in the
literature led to the work by H.J. Lory, D.C. Lai and W.H., Huggins
(Reference 9) which was the method of analysis which we decided

to pursue.

The nonlinearities experimentally tested to establish verifi-
cation of the analysis were a deadband and a soft-limiter which
are in the class that can be approximated by a polynomial fit
over a specified input range. These two measured nonlinearities
are illustrated in Figure 3-la and 3-1lb., Figure 3-1lc and 3-14
are illustrative examples of a 3rd order polynomial fit to the

nonlinearity.

The problem of investigating nonlinearities can be divided into
the following areas:

1, static nonlinear elements

2. Cascaded static nonlinearities and dynamic elements

3. Feedback systems composed of nonlinear and linear
dynamic elements

a) Nonlinearities in the feedback path
b) Nonlinearities in the forward path

3-1
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Figure 3-1

Nonlinear Elements

Each of these problems will be further defined and analyzed in

the following discussions,

3.1 STATIC NONLINEAR ELEMENTS

Reference 9 is directly concerned with the identification of
static nonlinear operators by using growing exponentials. The
following is a brief presentation of the method reported., It

is important that this method be established since it was the
starting point for the work which followed on cascaded nonlinear-

ities and dynamic systems. Assume that the static nonlinear




system can be approximated by a polynomial function of the input

as

Fe,)-= e, +be”

3
,tCoe,

If a growing exponential signal is applied, then the output of

the nonlinearity can be expressed

Fle) = @ exp(’c) + b exf(zt) t exf('ﬁt)

Reference 9 shows that a filtering system can be constructed to
perform the measurement of a, b, and c¢. The measured values are

a minimum mean square estimate with a weighting of 1/el.

Suppose we wish to measure the parameters in the sense of ref-
erencing the system to a nominal system in the single parameter
testing philosophy. Under this assumption we take the Taylor

series expansion and obtain the error response of

A F(d,) = Al (‘:xf(t) + b exf(zt) + DC cxr(‘st)

We can now filter the error response by the same filtering system
to measure the change in the parameters, The filtering is ac-
complished using a set of orthogonal filters as described in

the Phase C Final Report (Reference 4). Figure 3-2 gives a

block diagram representation of the orthogonal filter bank.

The time domain representation of the filters in Figure 3-2 is:

3-3



G, t) =iz ¢

= o for t<o

@, (¢t) - 2,<~1,c’t-+3a71t>
= o “For t<o

45(t) = Ve (3@“1:—12,63’1t:+/oa-3tj
. o For t<o

The output of any filter @n(S) is obtained by the convolution
integral

)= 7 Fft-v) ¢, (v)d T

‘ e [ () \:‘b:s“)

| JZS—l | .
S+l ' S+ A S+3

Figure 3-2
Orthogonal Filter Bank
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Taking the output at time t = 0 and letting t' =
o]
Colo) = Slw .F(t/) ¢n("t’)dt/

/
and since (bné-t.) are orthogonal over the t' interval from

- o to 0, then the output values

of the following series

fE) = ¢ ¢, (-t) + ¢, $al-t) +cy Oy-t)
¢, VX ¥+ C, l(—lét—+3c*t>
+c, JT(s etoia ety e3t)

sacteab et

at

+0C e =

- T we have

Cn(o) are the coefficients

By equating coefficients of the terms we have an estimator for

the parameter variations of

[ aa]
s b
| ec.

ES

O

(o]

-4 3V¢ || €
A -ln.f( C,
o IO'/(T Cs

Time sampling may also be applied to measuring the parameter

variations of a static nonlinearity.

sample

times then the following set

to predict the parameter variations.

(pa

~

o b

AC |

[ et

cl‘t,

eltj_

If we choose 3 selected

P o
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3.1.1 Statjc Nonlinearity EXperimentation

To verify these results by experimentation an analog multiplier
was tested. The results shown in Figure 3-3 give the third
order polynomial fit for the multiplier. The tests indicate
that the linearity of a transfer function or any other input-
output device can be tested by applying a growing exponential
to the input and measuring the resulting output signal. Figure
3-4 shows example results of a linearity measurement. The
function measured was a soft-limiter with the breaks at t+ 50
volts, Notice that when &, = §gv , the equation for the

function can be obtained from the data in the figure as follows:

74 = a(80), a = 74/80
48 = b(80)%, b = 48/(80)2
-78 = ¢(80)3, ¢ = -78/(80)3

Thus, the measurement of a static nonlinearity when representable
by a polynomial approximation can be accomplished., If a growing
exponential is applied then a linear estimator can be used to
measure changes in the parameters or the magnitude of the
parameters. If a known input signal is applied, time samples

can also be used to establish estimates of the parameters.

3.2 CASCADED NONLINEAR AND DYNAMIC ELEMENTS

The assumption that the static-nonlinearity can be approximated
by a polynomial will also be applicable to cascaded elements,
The nonlinearity can be written in Laplace transform notation as:

Hos) - 2@ = g p L&) L)

¢, (s) e,(s) €,(s)

3-6
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The total dynamic system is illustrated in Figure 3-5.

co H (S) e. NO’\";\CL\[‘ el— c3
ol E Iem«w\+ Hz_g ) [
Figure 3-5

Cascaded Elements

The nonlinear element and the element transfer functions can

be combined into one transfer function

Zfeie] (tj CH o ]a([e ‘i)

Ho3(_5): Eigs_). = HollS) HLg(S) + L H&l( ) ¢, ( ) f (s )

€, (s)

This transfer function may now be analyzed using the single
parameter testing procedures developed during the first three
phases, Let us assume the following example to illustrate the

procedures, Let

HOI (s) = | y € (t) = Co(t) HZ:I (S) = !

) S+W

The total transfer function is therefore

Hes) = €20 o o b&lelt)]  oL[eje)]

e, (s) SEW  (s+1) E,(5)  (s+w) €.(s)
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Taking the partial derivatives with respect to the parameters

a, b, ¢ and w for a given input signal we obtain

A Hey _ |

da S+ W

L] e )
o Hi) _  L[erw)] éi'L]
- +

<o 1 c.,.(s)
S b (S-H;J) Co(s) 3b S+ W

2H8 | Z[epw)] {*‘“ el

3 Co(s)
< (s+W) €ols) S+
ZLelw)
3 H(s) G [ Cols) '
= S Dt ,2
S W (s+w)* (s+w)‘- S e C((()t)]
Lle, 3((.)]]
s sw) L el )]
(s+w)* AN e, (s)

Two input testing signals were investigated for use in testing
these cascaded elements, One was a ramp with a time base of (1/w)
seconds and the other was a pulse with a pulse width of (1/w) sec-

onds. Substituting the Laplace transforms of these waveforms into

3-10




the equations, the partial derivatives were determined. The
partial derivatives were tested for independence by forming the
Wronskian determinant and checking to see if it was zero, It
was found that the ramp led to independent partial derivatives

but the pulse did not.

Thus, by using a selected input signal the parameters a, b, ¢

and w can be measured. In general, it is reasonable to expect
that the system can be tested with a large class of input signals,
Although it can not be stated with assurance, we believe that

any signal which is not held constant when applied to the non-
linear element should allow measurement of the factors asso-
ciated with the nonlinearity when the nonlinear element is

cascaded with a dynamic system.

3.2.1 Experimentation on Cascaded Elements

To verify the ability to test the parameters of cascaded ele-
ments, two nonlinearities were tested in a cascaded configuration,
The systems tested were a deadband and a soft-limiter followed by

k

a transfer function S+ . The experimental responses of the

system were taken with the signal illustrated in Figure 3-6., The

frequency spectrum of the signal is given in Figure 2-4,

Figure 3-7 gives the deadband system response for each of the
parameter variations, The parameter variations are gain, band-
width, and upper and lower breakpoints in the deadband element.
Figure 3-8 gives the responses of parameter changes in the soft-

limiter system. The parameter varied were gain, bandwidth, and

3-11
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Figure 3-6

Testing Signal

upper and lower limiting levels, In all cases the parameter
responses were seperable indicating independent partial deriv-
atives,

3.3 NONLINEAR ELEMENTS IN FEEDBACK SYSTEMS

Nonlinear elements in feedback systems will now be considered.
We will again assume that the nonlinear element can be approxi-

mated by the cubic equation

e, ) = a et)+he' )+ c e’E)

3-12
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Dead-Band Error Responses

Output Error Signals for Gain (k) Changes
Figure 3-8,
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Ho(s) = a +
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In feedback systems there are normally two elements, one 1in
the feedback path, and one in the forward path as illustrated
in Figure 3-9, We will first allow the nonlinearity to be the

forward element and then the feedback element,

3.3.1 Nonlinear Elements in the Forward Path

The transfer function for the feedback system is

Vo) Gl ()
Vi (s) |+ 65 (8) HEs)
If we assume that F{(S):. «k then
Vo G _ (S HW) b (5)

Vi (s) ) + 6,“_(3)['_5%] SHW +k &4 ()
¢ bx[el®)] o L[] )

S+Wtak +bk _gﬁ’[e,‘(t)] rek o [e36)]
€, (s) €, (s)

The Laplace transform of a ramp function with a time base of
(1/w) seconds was substituted into this equation and the partial

derivatives of the transfer function with respect to k, w, a, Db,
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and c were determined. The partial derivatives were then tested
for independence by forming the Wronskian determinant and checking
to see if it was zero, If was found that the partial derivatives
are independent for the case of a ramp input signal, It is im-
portant to recognize that in a pracitcal application there will

be substantial sized second partial derivatives, also, and these

may limit the range over which the parameters can be measured.

3.3.2 Nonlinear Element in the Feedback Loop

The transfer function for the feedback system, assuming that

k .
€= SHp i

Vos) k/(+w) _ k
Vi () / + s’iw H, (3) S+w + k HNL(S)
_ ‘ -1
(sew ,, , bZLe®)] < ZLelt)]
B k. e, (s) & (s)

The Laplace transform of a ramp function with a time base of
(1/w) seconds was substituted into this equation and the partial
derivatives of the transfer function with respect to k, w, a, Db,

and c were determined., It was found that the partial derivative

S
js%;f- and S were not independent and therefore it

would be impossible to separate changes in "a" with changes in
the parameter w, Furthermore the partial derivatives with re-
spect to these two parameters will be equal for any input signal,

A parameter which could be measured was (a-w). If, however, the
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output can be taken after the nonlinearity as shown in Figure
3-9 the value of w and could be separated since the nonlinearity

is now in the forward loop.

‘Q}—"G(ﬁ) * normal output

H(s)

o modified output

Figure 3-9

Feedback System

The point to be made is that care should be taken in the measure-~
ments of a nonlinearity to insure that the output is chosen after
the nonlinearity in a feedback system, and the input signal should
be of such a form as not to have constant signal levels going

into the nonlinear element.
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4.0 AC AMPLIFIER ANALYSIS

The analysis of the AC amplifier was divided into two parts, an
experimental analysis and a theoretical analysis. The experi-
mental analysis was done by using an actual AC amplifier and
test equipment such as signal generators and oscilloscopes. A
frequency plot was made on a point by point basis, measuring
both magnitude and phase of the output signal with a constant
amplitude input signal, The AC amplifier was then spot checked
for output phase and amplitude variation from the nominal using

different input signal levels,

The theoretical analysis was accomplished by using the schematic
drawing and making simplifying assumptions. Then computing what
the ideal transfer function would be using nominal values for

the components,
4.1 EXPERIMENTAL ANALYS IS
A block diagram of the test equipment setup for the experimental

analysis is shown in Figure 4-1,

Signal Generator #l1 is used to generate the testing signals from
1 Hz to 10 kHz. The scope is used to detect any signal distor-
tion in the output and the output level is measured on the rms

meter,

The input signal and the output signal are used to start and

stop the counter respectively, while the second signal generator
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Figure 4-1

Experimental Test Setup

is set to give the proper phase indication at the given test

frequency.

The amplifier was adjusted to have a gain of 100 at the midband
frequency range, and this output was used as a normalized zero

dh signal., Figure 4-2 is a plot of the normalized output of the
AT amplifier from 1 Hz to 10 kHz and Figure 4-3 is the phase plot.
Since the AC amplifier had a tendency to oscillate at frequencies
below 10 Hz at the given input signal level, lower signal levels
were used and the output was compensated for in this range. NoO
measurements were taken bhelow 1 H, due to the oscillation causing
severe distortion in the output waveform.,
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4.2 THEORETICAL ANALYSIS

The theoretical analysis consisted of using schematic drawing
number 50M04426, revision A, dated October 14, 1965 and dividing
the circuit into stages which could be more easily analyzed to
obtain transfer functions. One basic assumption is that the
transistors can be represented by either an ideal voltage source
equal to 8RgI in the case of an emitter-follower or an ideal
current source equal to RIin in the case of a grounded emitter
amplifier. The transistor forward current gain (g) was assumed

to be 150 for the entire operating range.

The amplifier circuit analysis was divided into six stages with

each division occurring at a transistor. Figures 4-4 through 4-9

are the simplified circuits for each stage of the amplifier. 1In

the circuit for stage 6 not enough information was known about

the transformer Tl to substitute circuit parameter values into the

general stage transfer function. The composite transfer function

is the product of each of the stage transfer functions and is

equal to
| E- | ks*(s+35) (s%149. 58 +227x10%) _H(s)
Bin 7 (s+.423) (s+135)(S+ k17) (5+ 1.96) (5 +80. ) E+HB5)

__(s+2854)

(s+3.65%16%) (F7a45.7. 5 + 5 1xi0¥) (™43, 11 xtots+ 8I6XI0e)

B (js"’.,_é,p 1x10'S +7.27%10 ,
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where K is the overall amplifier midband gain and H(S) is the transfer function of
the output transformer stage. The two coil resistances in the third stage have
been assumed to be RLi = RL2 = 1000 ohms, The compensating resistor used
in the third and fourth stage calculations was measured to be 320 ohms, It is
estimated that the calculated poles and zeroes are accurate to within about 5 to

10% due to assumptions which have been made in parameter values and determining

the stage transfer functions."

The above transfer function is plotted as a straight line Bode plot in Figure 4-10
and is normalized to zero db gain at mid-band frequencies., The similar frequency
response of the theoretical transfer function and the experimentally determined
frequency response in the experimental analysis indicates an accurate theoretical
transfer function and also the assumption and simplifications in determining the

transfer function were valid,
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Transfer Unit
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5.0 TRANSFER FUNCTION DETERMINATION PROGRAM

During this quarter a digital computer program was written

to calculate the transfer function of a circuit or network
from the frequency-gain and frequency-phase information avail-
able by direct measurement., The output of the program is the
coefficients of two polynomials, numerator and denominator,

which would give a least squares curve fit to the given data,

5.1 PROGRAM THEORY

Any transfer function can be written as the ratio of two
polynomials
N 3]
S ans Clw) ¢ Jdiw)
N:o .

- : - Mo = o)ty Be)
Clw) vy Fw

M ™
2 bw\3 S:JVJ

Normalizing the denominator by letting bo = | and setting

the real and imaginary parts equal we get the matrix equations

[ | 0 -~ w?” o wq- rdo- FO( -Bw "“!wv"ewao‘“’q '
| [ ! !
| ‘ a, | | b,
| ; i ; | !
A e | | b,
" |
Qa
, 3 b,
aq bq
. - . - - - b
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The "a" vector contains all of the unknown coefficients of
the transfer function. If the number of data points is equal
to the number of unknown coefficients then the A matrix is
square and the coefficients can be solved for using

[] = (AT [b]

If more data points are used the coefficients can be solved
for using

i
T e
[a] = [A™A] [A][b]
T
where A is the transpose of A, From least square statis-
tical theory (Reference 9, 10) it can be shown that the equa-

tion gives a minimum variance estimate of the transfer function

coefficients,

5.2 PROGRAM RESULTS

The program has not been fully evaluated for high order
transfer functions where the phase variation is greater than
+ 180 degrees, but we have evaluated the program for simple
transfer functions, Using five data points corresponding

to the transfer function the results obtained are

I +S
given in Table 5-1,
Transfer function form to be Transfer function determined
fitted to the data by the program _
o &e Q. bJ -.b"
I + b, S looysy[ — [[.00085|
Ao +9.5 ' 4
. | 00386 |114107" | |oodeq| —
| + b S '
qo

Loo3s6| — |1.00397| 700"

| +bS +bSY
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Runs were also made with incorrect data points and the re-
sulting equations clearly indicated the incorrect point by
showing a large deviation between the actual and calculated
point, The results obtained with this program for more com-

plicated transfer functions are still being evaluated.
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6.0 CONCLUS IONS

This report documents the work performed on the single param-

eter testing program during the first quarter of Phase E,

Contract NAS8-11715, Part III., The conclusions drawn from

this effort were

1)

2)

3)

4)

5)

Simpler to generate test signals were investigated
and found to achieve single parameter testing param-
eter prediction results comparable to previously ob-
tained results,

The use of second order terms to represent the dif-
ference signal between the reference system and the
system to be tested, increased the accuracy of the
parameter predictions, The use of cross order terms
however, d4id not.

The transfer function of the AC amplifier was found
to have a seventeenth order denominator and a twelfth
order numerator, The DC amplifier will be evaluated
during the next quarter,

A digital program to determine transfer functions
from magnitude and phase input data was written,
Initial results look good but complete program capa-
bility has not been evaluated at this time,

It was found that parameter measurements could be
made of a nonlinearity represented by a polynomial,

and a limiter and deadband nonlinearity.
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